A Critical Function of Mad2l2 in Primordial Germ Cell Development of Mice
نویسندگان
چکیده
The development of primordial germ cells (PGCs) involves several waves of epigenetic reprogramming. A major step is following specification and involves the transition from the stably suppressive histone modification H3K9me2 to the more flexible, still repressive H3K27me3, while PGCs are arrested in G2 phase of their cycle. The significance and underlying molecular mechanism of this transition were so far unknown. Here, we generated mutant mice for the Mad2l2 (Mad2B, Rev7) gene product, and found that they are infertile in both males and females. We demonstrated that Mad2l2 is essential for PGC, but not somatic development. PGCs were specified normally in Mad2l2(-/-) embryos, but became eliminated by apoptosis during the subsequent phase of epigenetic reprogramming. A majority of knockout PGCs failed to arrest in the G2 phase, and did not switch from a H3K9me2 to a H3K27me3 configuration. By the analysis of transfected fibroblasts we found that the interaction of Mad2l2 with the histone methyltransferases G9a and GLP lead to a downregulation of H3K9me2. The inhibitory binding of Mad2l2 to Cyclin dependent kinase 1 (Cdk1) could arrest the cell cycle in the G2 phase, and also allowed another histone methyltransferase, Ezh2, to upregulate H3K27me3. Together, these results demonstrate the potential of Mad2l2 in the regulation of both cell cycle and the epigenetic status. The function of Mad2l2 is essential in PGCs, and thus of high relevance for fertility.
منابع مشابه
Review of Differentiation and Proliferation of Primordial Germ Cells in Culture
Primordial germ cells (PGCs) are highly specialized cell population that arises from the epiblast in vivo. There are three critical steps in the life cycle of these cells: 1-Specification 2-migration and proliferation 3-prenatal and postnatal sex specific development. Specification of germ cells in epiblast occurs due to signals secreted from extraembryonic tissues. Primordial germ cells are re...
متن کاملI-51: The Role of the Transcription FactorGCNF in Germ Cell Differentiation and Reproductionin Mice
The germ cell nuclear factor (GCNF) is a member of the nuclear receptor super family of transcription factors. GCNF expression during gastrulation and neurulation is critical for normal embryogenesis in mice. GCNF represses expression of the POU domain transcription factor Oct4 during mouse post-implantation development in vivo. Oct4 is thus down-regulated during female gonadal development, whe...
متن کاملGenetic and Epigenetic landscape of Germline Stem Cells
Elucidating the critical epigenetics events involved in differentiation and reprogramming of cells to primordial germ cells (PGCs) is among the interesting issues in stem cell research. Here, I will talk about critical transcription factors and global hypomethylation in development of germ cells. Evidence strongly suggests that the earliest PGCs emerging in the E7.25 mouse embryo epiblast have...
متن کاملAn investigation of primordial germ cell development in embryo and larvae of Huso huso
In sturgeons, Primordial Germ Cells originate from the vegetal pole of the egg. They migrate toward genital ridges during developmental stages and finally differentiate into gametes (the only cells that transmit genetic information). In this study, the cells were isolated from the place of migration of primordial germ cells in Huso huso’s larvae during two stages before and after absorption of ...
متن کاملThe effect of BMP4 on mouse embryonic stem cell proliferation and differentiation into primordial germ cells
Background and Aim: Artificial gamete production from stem cells is a novel strategy for treatment of infertility. Among various stem cell sources, embryonic stem cells (ESC) can be considered as an appropriate source for in vitro formation of germ cells. In this study we evaluated the effect of BMP4 on proliferation and differentiation of mouse embryonic stem cells into primordial germ cells (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2013